$estimate
$estimate$Intercept
[1] "$b = 57.65$, 95\\% CI $[49.82, 65.47]$"
$estimate$PIL_total
[1] "$b = -0.40$, 95\\% CI $[-0.47, -0.33]$"
$estimate$AUDIT_TOTAL_NEW
[1] "$b = -0.10$, 95\\% CI $[-0.29, 0.09]$"
$estimate$DAST_TOTAL_NEW
[1] "$b = 0.89$, 95\\% CI $[-0.10, 1.88]$"
$estimate$modelfit
$estimate$modelfit$r2
[1] "$R^2 = .37$, 90\\% CI $[0.28, 0.44]$"
$estimate$modelfit$r2_adj
[1] "$R^2_{adj} = .36$"
$estimate$modelfit$aic
[1] "$\\mathrm{AIC} = 1,787.29$"
$estimate$modelfit$bic
[1] "$\\mathrm{BIC} = 1,805.10$"
$statistic
$statistic$Intercept
[1] "$t(256) = 14.50$, $p < .001$"
$statistic$PIL_total
[1] "$t(256) = -11.63$, $p < .001$"
$statistic$AUDIT_TOTAL_NEW
[1] "$t(256) = -1.08$, $p = .283$"
$statistic$DAST_TOTAL_NEW
[1] "$t(256) = 1.77$, $p = .077$"
$statistic$modelfit
$statistic$modelfit$r2
[1] "$F(3, 256) = 49.58$, $p < .001$"
$full_result
$full_result$Intercept
[1] "$b = 57.65$, 95\\% CI $[49.82, 65.47]$, $t(256) = 14.50$, $p < .001$"
$full_result$PIL_total
[1] "$b = -0.40$, 95\\% CI $[-0.47, -0.33]$, $t(256) = -11.63$, $p < .001$"
$full_result$AUDIT_TOTAL_NEW
[1] "$b = -0.10$, 95\\% CI $[-0.29, 0.09]$, $t(256) = -1.08$, $p = .283$"
$full_result$DAST_TOTAL_NEW
[1] "$b = 0.89$, 95\\% CI $[-0.10, 1.88]$, $t(256) = 1.77$, $p = .077$"
$full_result$modelfit
$full_result$modelfit$r2
[1] "$R^2 = .37$, 90\\% CI $[0.28, 0.44]$, $F(3, 256) = 49.58$, $p < .001$"
$table
A data.frame with 6 labelled columns:
term estimate conf.int statistic df p.value
1 Intercept 57.65 [49.82, 65.47] 14.50 256 < .001
2 PIL total -0.40 [-0.47, -0.33] -11.63 256 < .001
3 AUDIT TOTAL NEW -0.10 [-0.29, 0.09] -1.08 256 .283
4 DAST TOTAL NEW 0.89 [-0.10, 1.88] 1.77 256 .077
term : Predictor
estimate : $b$
conf.int : 95\\% CI
statistic: $t$
df : $\\mathit{df}$
p.value : $p$
attr(,"class")
[1] "apa_results" "list"