Lines, Math, and Regression 
 
Components of Regression 
\[
{y_i} = \beta_0 + \beta_1{X_i} +{\varepsilon_i}
\] 
\[
{y_i} = b_0 + b_1{X_i} + e
\] 
What we’ve been referring to thus far as \({Y}\) 
The outcome variable , response variable , or dependent variable 
The outcome is the thing we are trying to explain or predict
 What we’ve been referring to thus far as \({X}\) 
The explanatory variables , predictor variables , or independent variables 
Explanatory variables are things we use to explain or predict variation  in \(Y\)  
  
 
 
Drawing Lines with Math 
Remember \(y = mx + b\)  from high school algebra 
 
\[
{y_i} = \beta_0 + \beta_1{X_i} +{\varepsilon_i}
\] 
\[
{y_i} = b_0 + b_1{X_i} + e
\] 
\(y_i\)  is the expected response for the \(i^{th}\)  observation
\(b_0\)  is the intercept, typically the expected value of \(y\)  when \(x = 0\) 
\(b_1\)  is the slope coefficient, the average increase in \(y\)  for each one unit increase in \(x\) 
\(e_i\)  is a random noise term
 
 
The Best Fit Line and Least Squares 
Many lines could fit the data, but which is best?
The best fitting line is one that produces the “least squares”, or minimizes the squared difference between X and Y 
 We use a method known as least squares to obtain estimates of \(b_0\)  and \(b_1\) 
 
 
Gauss-Markov and Linear Regression 
 
Error 
 
Visualize Errors as Squares 
 
Best fit line 
Shows two concepts:
Regression line is “best fit line”
The “best fit line” is the one that minimizes the sum of the squared deviations between each point and the line
  
 
 
 
Worse Fit Lines 
 
Simple Regression Example 
Depression scores and meaningfulness (in one’s life) 
 
<-  read.csv ("https://raw.githubusercontent.com/jgeller112/psy503-psych_stats/master/static/slides/10-linear_modeling/data/regress.csv" ) 
 
Simple Regression Example 
 
lm() in R
<- lm (CESD_total~ PIL_total, data= master) 
 
The Relation Between Correlation and Regression 
\[\hat{r} = \frac{covariance_{xy}}{s_x * s_y}\] 
\[\hat{\beta_x} =  \frac{\hat{r} * s_x * s_y}{s_x} = r * \frac{s_y}{s_x}\] 
\[\hat{\beta_0} = \bar{y} - \hat{\beta_x}\] 
 
lm() in R 
lm() in R 
lm() in R\[\hat{CESD_{total}} = 56 + (-.39)*PIL_{total}\] 
 
lm() in R\[ \hat{CESD_{total}} = 56 + (-.39)*60\] 
 
Predictions 
#create a dataframe with value you want to predict <-  data.frame (PIL_total =  c (20 ,60 , 80 , 90 , 100 ))predict (model1, meaning)
       1        2        3        4        5 
48.58976 32.97821 25.17243 21.26954 17.36665  
 
 
Residuals, Fitted Values, and Model Fit 
If we want to make inferences about the regression parameter estimates, then we also need an estimate of their variability 
 
We also need to know how well are data fits the linear model 
 
 
SS Unexplained (Sums of Squares Error) 
\[residual = y - \hat{y} = y - (x*\hat{\beta_x} + \hat{\beta_0})\] 
\[SS_{error} = \sum_{i=1}^n{(y_i - \hat{y_i})^2} = \sum_{i=1}^n{residuals^2}\] 
 
SS Total (Sums of Squares Total) 
Squared differences between the observed dependent variable and its mean.
 
\[SS_{total} = \sum{(y_i - \bar{y})^2}\] 
 
SS Explained (Sums of Squares Regression) 
The sum of the differences between the predicted value and the mean of the dependent variable
 
\[SS_{Explained} = \sum (\hat{y_i} - \bar{y})^2\] 
 
All Together 
 
broom Regression
tidy(): coefficient table 
glance(): model summary 
augment(): adds information about each observation 
 
 
Regression: NHST 
\[H_0\colon \ \beta_1=0\]  \[H_1\colon \ \beta_1\ne0\] 
\[\begin{array}{c}
t_{N - p} = \frac{\hat{\beta} - \beta_{expected}}{SE_{\hat{\beta}}}\\
t_{N - p} = \frac{\hat{\beta} - 0}{SE_{\hat{\beta}}}\\
t_{N - p} = \frac{\hat{\beta} }{SE_{\hat{\beta}}}
\end{array}\] 
# A tibble: 2 × 5
  term        estimate std.error statistic  p.value
  <chr>          <dbl>     <dbl>     <dbl>    <dbl>
1 (Intercept)   56.4      3.75        15.0 2.43e-37
2 PIL_total     -0.390    0.0336     -11.6 1.95e-25 
 
 
Calculate Standard Error 
\[MS_{error} = \frac{SS_{error}}{df} = \frac{\sum_{i=1}^n{(y_i - \hat{y_i})^2} }{N - p}\] 
\[
SE_{model} = \sqrt{MS_{error}}
\] 
\[SE_{\hat{\beta}_x} = \frac{SE_{model}}{\sqrt{{\sum{(x_i - \bar{x})^2}}}}\] 
#get mse with performance = performance_mse (model1)#sqrt <- sqrt (mse)# <-  sum ((master$ PIL_total -  mean (master$ PIL_total))^ 2 )<-  sqrt (x_de)<-  SE/ x_sqrt 
 
95% CIs 
\[b_1 \pm t^\ast (SE_{b_1})\] 
 
 
(Intercept) 
56.3955372 
3.7525824 
15.02846 
0 
49.0068665 
63.7842079 
 
PIL_total 
-0.3902889 
0.0336426 
-11.60104 
0 
-0.4565296 
-0.3240481 
 
 
 
 
<-  model_parameters (model1) plot (result) +  theme_minimal (base_size= 16 ) 
 
Getting Residuals and Predicted Values 
= augment (model1)# residuals and fitted values head (assump) %>% :: kable ()
 
 
28 
121 
9.170584 
18.829416 
0.0057970 
7.602150 
0.0176455 
2.4601796 
 
37 
76 
26.733583 
10.266417 
0.0268288 
7.663762 
0.0253376 
1.3557879 
 
20 
98 
18.147228 
1.852772 
0.0068267 
7.689629 
0.0002016 
0.2422016 
 
15 
122 
8.780295 
6.219705 
0.0062133 
7.680888 
0.0020653 
0.8128131 
 
7 
99 
17.756939 
-10.756939 
0.0063593 
7.661748 
0.0063246 
-1.4058582 
 
7 
134 
4.096829 
2.903171 
0.0142050 
7.688375 
0.0010455 
0.3809315 
 
 
 
 
 
Model Fit 
= glance (model1) #model fit indices %>% :: kable ()
 
 
0.3368106 
0.334308 
7.675957 
134.5842 
0 
1 
-922.0236 
1850.047 
1860.809 
15613.88 
265 
267 
 
 
 
 
 
Fitted line with 95% CIs 
# get cis for fitted values %>% augment (se_fit =  TRUE , interval =  "confidence" ) %>% :: kable ()
 
 
28.0 
121.0000 
9.170584 
8.0198612 
10.321307 
0.5844329 
18.8294160 
0.0057970 
7.602150 
0.0176455 
2.4601796 
 
37.0 
76.0000 
26.733583 
24.2580456 
29.209121 
1.2572841 
10.2664169 
0.0268288 
7.663762 
0.0253376 
1.3557879 
 
20.0 
98.0000 
18.147228 
16.8984852 
19.395971 
0.6342156 
1.8527720 
0.0068267 
7.689629 
0.0002016 
0.2422016 
 
15.0 
122.0000 
8.780295 
7.5889743 
9.971616 
0.6050519 
6.2197049 
0.0062133 
7.680888 
0.0020653 
0.8128131 
 
7.0 
99.0000 
17.756939 
16.5517004 
18.962178 
0.6121206 
-10.7569391 
0.0063593 
7.661748 
0.0063246 
-1.4058582 
 
7.0 
134.0000 
4.096829 
2.2955143 
5.898143 
0.9148575 
2.9031713 
0.0142050 
7.688375 
0.0010455 
0.3809315 
 
27.0 
102.0000 
16.586073 
15.4975049 
17.674640 
0.5528653 
10.4139275 
0.0051877 
7.663586 
0.0048242 
1.3602272 
 
10.0 
124.0000 
7.999717 
6.7207582 
9.278676 
0.6495620 
2.0002826 
0.0071610 
7.689488 
0.0002467 
0.2615288 
 
9.0 
126.0000 
7.219140 
5.8453381 
8.592941 
0.6977308 
1.7808604 
0.0082625 
7.689693 
0.0002261 
0.2329695 
 
8.0 
112.0000 
12.683184 
11.7540290 
13.612339 
0.4719022 
-4.6831838 
0.0037795 
7.685057 
0.0007088 
-0.6112670 
 
3.0 
110.0000 
13.463762 
12.5377737 
14.389749 
0.4702938 
-10.4637615 
0.0037538 
7.663367 
0.0035142 
-1.3657524 
 
7.0 
105.0000 
15.415206 
14.4170377 
16.413374 
0.5069529 
-8.4152059 
0.0043618 
7.672944 
0.0026442 
-1.0987059 
 
15.0 
107.0000 
14.634628 
13.6783551 
15.590901 
0.4856751 
0.3653718 
0.0040034 
7.690448 
0.0000046 
0.0476951 
 
12.0 
98.0000 
18.147228 
16.8984852 
19.395971 
0.6342156 
-6.1472280 
0.0068267 
7.681105 
0.0022193 
-0.8035896 
 
5.0 
124.0000 
7.999717 
6.7207582 
9.278676 
0.6495620 
-2.9997174 
0.0071610 
7.688248 
0.0005547 
-0.3922008 
 
18.5 
88.0000 
22.050117 
20.2867099 
23.813523 
0.8956048 
-3.5501167 
0.0136134 
7.687333 
0.0014965 
-0.4656789 
 
7.0 
103.0000 
16.195784 
15.1406420 
17.250925 
0.5358888 
-9.1957836 
0.0048740 
7.669525 
0.0035319 
-1.2009286 
 
7.0 
116.0000 
11.122028 
10.1318833 
12.112173 
0.5028781 
-4.1220283 
0.0042920 
7.686277 
0.0006242 
-0.5381613 
 
7.0 
128.0000 
6.438562 
4.9641036 
7.913020 
0.7488527 
0.5614381 
0.0095176 
7.690402 
0.0000260 
0.0734930 
 
9.0 
109.0000 
13.854050 
12.9225573 
14.785543 
0.4730898 
-4.8540504 
0.0037986 
7.684654 
0.0007653 
-0.6335752 
 
11.0 
108.0000 
14.244339 
13.3027019 
15.185977 
0.4782419 
-3.2443393 
0.0038818 
7.687878 
0.0003494 
-0.4234853 
 
11.0 
109.0000 
13.854050 
12.9225573 
14.785543 
0.4730898 
-2.8540504 
0.0037986 
7.688467 
0.0002646 
-0.3725251 
 
18.0 
85.0000 
23.220983 
21.2855757 
25.156391 
0.9829612 
-5.2209833 
0.0163986 
7.683653 
0.0039208 
-0.6858201 
 
0.0 
136.0000 
3.316251 
1.4000461 
5.232456 
0.9732084 
-3.3162509 
0.0160748 
7.687728 
0.0015496 
-0.4355458 
 
27.0 
90.0000 
21.269539 
19.6174647 
22.921613 
0.8390609 
5.7304611 
0.0119487 
7.682291 
0.0034107 
0.7510473 
 
23.0 
94.0000 
19.708384 
18.2681930 
21.148574 
0.7314487 
3.2916165 
0.0090804 
7.687787 
0.0008503 
0.4307820 
 
3.0 
110.0000 
13.463762 
12.5377737 
14.389749 
0.4702938 
-10.4637615 
0.0037538 
7.663367 
0.0035142 
-1.3657524 
 
8.5 
104.0000 
15.805495 
14.7805831 
16.830406 
0.5205355 
-7.3054948 
0.0045987 
7.677265 
0.0021021 
-0.9539333 
 
14.0 
104.0000 
15.805495 
14.7805831 
16.830406 
0.5205355 
-1.8054948 
0.0045987 
7.689674 
0.0001284 
-0.2357570 
 
5.0 
108.0000 
14.244339 
13.3027019 
15.185977 
0.4782419 
-9.2443393 
0.0038818 
7.669324 
0.0028370 
-1.2066683 
 
7.0 
106.0000 
15.024917 
14.0497190 
16.000115 
0.4952868 
-8.0249170 
0.0041634 
7.674538 
0.0022943 
-1.0476446 
 
8.0 
118.0000 
10.341451 
9.2966681 
11.386233 
0.5306276 
-2.3414506 
0.0047788 
7.689124 
0.0002245 
-0.3057684 
 
10.0 
113.0000 
12.292895 
11.3551157 
13.230674 
0.4762824 
-2.2928949 
0.0038500 
7.689181 
0.0001731 
-0.2992880 
 
9.0 
81.0000 
24.782139 
22.6102899 
26.953988 
1.1030457 
-15.7821388 
0.0206501 
7.627590 
0.0455075 
-2.0776118 
 
5.0 
96.0000 
18.927806 
17.5864623 
20.269149 
0.6812459 
-13.9278057 
0.0078767 
7.642177 
0.0131729 
-1.8216601 
 
24.0 
119.0000 
9.951162 
8.8739776 
11.028346 
0.5470838 
14.0488383 
0.0050798 
7.641470 
0.0085951 
1.8349058 
 
10.0 
107.0000 
14.634628 
13.6783551 
15.590901 
0.4856751 
-4.6346282 
0.0040034 
7.685168 
0.0007356 
-0.6049973 
 
21.0 
112.0000 
12.683184 
11.7540290 
13.612339 
0.4719022 
8.3168162 
0.0037795 
7.673363 
0.0022354 
1.0855426 
 
14.0 
95.0000 
19.318095 
17.9280271 
20.708162 
0.7059920 
-5.3180946 
0.0084593 
7.683453 
0.0020651 
-0.6957741 
 
4.0 
116.0000 
11.122028 
10.1318833 
12.112173 
0.5028781 
-7.1220283 
0.0042920 
7.677925 
0.0018634 
-0.9298335 
 
17.0 
84.0000 
23.611272 
21.6174266 
25.605118 
1.0126409 
-6.6112721 
0.0174039 
7.679518 
0.0066861 
-0.8688904 
 
6.0 
114.0000 
11.902606 
10.9516557 
12.853556 
0.4829718 
-5.9026061 
0.0039589 
7.681862 
0.0011798 
-0.7705000 
 
6.0 
98.0000 
18.147228 
16.8984852 
19.395971 
0.6342156 
-12.1472280 
0.0068267 
7.653805 
0.0086660 
-1.5879329 
 
5.0 
108.0000 
14.244339 
13.3027019 
15.185977 
0.4782419 
-9.2443393 
0.0038818 
7.669324 
0.0028370 
-1.2066683 
 
11.0 
127.0000 
6.828851 
5.4053723 
8.252329 
0.7229610 
4.1711492 
0.0088708 
7.686156 
0.0013333 
0.5458309 
 
7.0 
96.0000 
18.927806 
17.5864623 
20.269149 
0.6812459 
-11.9278057 
0.0078767 
7.655083 
0.0096613 
-1.5600740 
 
17.0 
104.0000 
15.805495 
14.7805831 
16.830406 
0.5205355 
1.1945052 
0.0045987 
7.690128 
0.0000562 
0.1559755 
 
7.0 
112.0000 
12.683184 
11.7540290 
13.612339 
0.4719022 
-5.6831838 
0.0037795 
7.682492 
0.0010438 
-0.7417908 
 
11.0 
106.0000 
15.024917 
14.0497190 
16.000115 
0.4952868 
-4.0249170 
0.0041634 
7.686473 
0.0005772 
-0.5254488 
 
37.0 
108.0000 
14.244339 
13.3027019 
15.185977 
0.4782419 
22.7556607 
0.0038818 
7.561376 
0.0171907 
2.9703081 
 
30.0 
88.0000 
22.050117 
20.2867099 
23.813523 
0.8956048 
7.9498833 
0.0136134 
7.674685 
0.0075041 
1.0428088 
 
20.0 
115.0000 
11.512317 
10.5438343 
12.480800 
0.4918763 
8.4876828 
0.0041063 
7.672645 
0.0025311 
1.1080264 
 
8.0 
118.0000 
10.341451 
9.2966681 
11.386233 
0.5306276 
-2.3414506 
0.0047788 
7.689124 
0.0002245 
-0.3057684 
 
16.0 
111.0000 
13.073473 
12.1482682 
13.998677 
0.4698959 
2.9265273 
0.0037475 
7.688363 
0.0002744 
0.3819754 
 
6.0 
102.0000 
16.586073 
15.4975049 
17.674640 
0.5528653 
-10.5860725 
0.0051877 
7.662688 
0.0049850 
-1.3827121 
 
10.0 
105.0000 
15.415206 
14.4170377 
16.413374 
0.5069529 
-5.4152059 
0.0043618 
7.683224 
0.0010950 
-0.7070200 
 
6.0 
109.0000 
13.854050 
12.9225573 
14.785543 
0.4730898 
-7.8540504 
0.0037986 
7.675216 
0.0020036 
-1.0251504 
 
7.0 
111.0000 
13.073473 
12.1482682 
13.998677 
0.4698959 
-6.0734727 
0.0037475 
7.681357 
0.0011819 
-0.7927201 
 
7.0 
110.0000 
13.463762 
12.5377737 
14.389749 
0.4702938 
-6.4637615 
0.0037538 
7.680146 
0.0013410 
-0.8436639 
 
15.0 
88.0000 
22.050117 
20.2867099 
23.813523 
0.8956048 
-7.0501167 
0.0136134 
7.678061 
0.0059016 
-0.9247838 
 
15.0 
95.0000 
19.318095 
17.9280271 
20.708162 
0.7059920 
-4.3180946 
0.0084593 
7.685848 
0.0013615 
-0.5649427 
 
14.0 
92.0000 
20.488961 
18.9448765 
22.033046 
0.7842148 
-6.4889612 
0.0104377 
7.679995 
0.0038087 
-0.8498085 
 
9.0 
111.0000 
13.073473 
12.1482682 
13.998677 
0.4698959 
-4.0734727 
0.0037475 
7.686378 
0.0005317 
-0.5316766 
 
12.0 
110.0000 
13.463762 
12.5377737 
14.389749 
0.4702938 
-1.4637615 
0.0037538 
7.689951 
0.0000688 
-0.1910533 
 
8.0 
114.0000 
11.902606 
10.9516557 
12.853556 
0.4829718 
-3.9026061 
0.0039589 
7.686714 
0.0005157 
-0.5094289 
 
44.0 
67.0000 
30.246183 
27.2094744 
33.282891 
1.5422935 
13.7538171 
0.0403710 
7.641780 
0.0703742 
1.8291067 
 
36.0 
103.0000 
16.195784 
15.1406420 
17.250925 
0.5358888 
19.8042164 
0.0048740 
7.592798 
0.0163813 
2.5863429 
 
30.0 
105.0000 
15.415206 
14.4170377 
16.413374 
0.5069529 
14.5847941 
0.0043618 
7.637684 
0.0079428 
1.9042196 
 
39.0 
69.0000 
29.465605 
26.5548035 
32.376407 
1.4783475 
9.5343948 
0.0370927 
7.667196 
0.0308610 
1.2658096 
 
26.0 
124.0000 
7.999717 
6.7207582 
9.278676 
0.6495620 
18.0002826 
0.0071610 
7.609687 
0.0199748 
2.3534632 
 
37.0 
68.0000 
29.855894 
26.8822104 
32.829578 
1.5102843 
7.1441059 
0.0387126 
7.677394 
0.0181446 
0.9492678 
 
13.0 
99.0000 
17.756939 
16.5517004 
18.962178 
0.6121206 
-4.7569391 
0.0063593 
7.684870 
0.0012368 
-0.6216993 
 
32.0 
107.0000 
14.634628 
13.6783551 
15.590901 
0.4856751 
17.3653718 
0.0040034 
7.615553 
0.0103272 
2.2668493 
 
34.0 
92.0000 
20.488961 
18.9448765 
22.033046 
0.7842148 
13.5110388 
0.0104377 
7.644915 
0.0165121 
1.7694352 
 
7.0 
117.0000 
10.731739 
9.7160668 
11.747412 
0.5158432 
-3.7317395 
0.0045162 
7.687035 
0.0005386 
-0.4872611 
 
27.0 
103.0000 
16.195784 
15.1406420 
17.250925 
0.5358888 
10.8042164 
0.0048740 
7.661538 
0.0048755 
1.4109828 
 
2.0 
111.0000 
13.073473 
12.1482682 
13.998677 
0.4698959 
-11.0734727 
0.0037475 
7.660109 
0.0039289 
-1.4453286 
 
22.0 
122.0000 
8.780295 
7.5889743 
9.971616 
0.6050519 
13.2197049 
0.0062133 
7.647051 
0.0093300 
1.7275978 
 
23.0 
60.0000 
32.978205 
29.4969773 
36.459433 
1.7680574 
-9.9782050 
0.0530552 
7.664543 
0.0499906 
-1.3358496 
 
17.0 
118.0000 
10.341451 
9.2966681 
11.386233 
0.5306276 
6.6585494 
0.0047788 
7.679502 
0.0018153 
0.8695355 
 
16.0 
124.0000 
7.999717 
6.7207582 
9.278676 
0.6495620 
8.0002826 
0.0071610 
7.674588 
0.0039458 
1.0460042 
 
7.0 
110.0000 
13.463762 
12.5377737 
14.389749 
0.4702938 
-6.4637615 
0.0037538 
7.680146 
0.0013410 
-0.8436639 
 
15.0 
121.0000 
9.170584 
8.0198612 
10.321307 
0.5844329 
5.8294160 
0.0057970 
7.682059 
0.0016913 
0.7616492 
 
1.0 
138.0000 
2.535673 
0.5024366 
4.568910 
1.0326469 
-1.5356732 
0.0180983 
7.689889 
0.0003757 
-0.2018981 
 
29.0 
81.0000 
24.782139 
22.6102899 
26.953988 
1.1030457 
4.2178612 
0.0206501 
7.686006 
0.0032504 
0.5552529 
 
2.0 
120.0000 
9.560873 
8.4482829 
10.673463 
0.5650659 
-7.5608728 
0.0054192 
7.676312 
0.0026577 
-0.9876871 
 
28.0 
89.0000 
21.659828 
19.9524648 
23.367191 
0.8671411 
6.3401722 
0.0127619 
7.680447 
0.0044666 
0.8312996 
 
3.0 
122.0000 
8.780295 
7.5889743 
9.971616 
0.6050519 
-5.7802951 
0.0062133 
7.682196 
0.0017838 
-0.7553894 
 
16.0 
92.0000 
20.488961 
18.9448765 
22.033046 
0.7842148 
-4.4889612 
0.0104377 
7.685464 
0.0018227 
-0.5878842 
 
18.0 
125.0000 
7.609428 
6.2838548 
8.935002 
0.6732367 
10.3905715 
0.0076926 
7.663639 
0.0071575 
1.3588884 
 
17.0 
104.0000 
15.805495 
14.7805831 
16.830406 
0.5205355 
1.1945052 
0.0045987 
7.690128 
0.0000562 
0.1559755 
 
11.0 
127.0000 
6.828851 
5.4053723 
8.252329 
0.7229610 
4.1711492 
0.0088708 
7.686156 
0.0013333 
0.5458309 
 
5.0 
135.0000 
3.706540 
1.8480728 
5.565007 
0.9438843 
1.2934602 
0.0151207 
7.690062 
0.0002213 
0.1697966 
 
26.0 
96.0000 
18.927806 
17.5864623 
20.269149 
0.6812459 
7.0721943 
0.0078767 
7.678055 
0.0033964 
0.9249938 
 
6.0 
125.0000 
7.609428 
6.2838548 
8.935002 
0.6732367 
-1.6094285 
0.0076926 
7.689838 
0.0001717 
-0.2104825 
 
8.0 
136.0000 
3.316251 
1.4000461 
5.232456 
0.9732084 
4.6837491 
0.0160748 
7.684988 
0.0030911 
0.6151486 
 
24.0 
92.0000 
20.488961 
18.9448765 
22.033046 
0.7842148 
3.5110388 
0.0104377 
7.687412 
0.0011151 
0.4598133 
 
12.0 
108.0000 
14.244339 
13.3027019 
15.185977 
0.4782419 
-2.2443393 
0.0038818 
7.689235 
0.0001672 
-0.2929548 
 
3.0 
132.0000 
4.877406 
3.1884041 
6.566409 
0.8578160 
-1.8774064 
0.0124889 
7.689602 
0.0003831 
-0.2461245 
 
1.0 
127.0000 
6.828851 
5.4053723 
8.252329 
0.7229610 
-5.8288508 
0.0088708 
7.682034 
0.0026036 
-0.7627554 
 
23.0 
110.0000 
13.463762 
12.5377737 
14.389749 
0.4702938 
9.5362385 
0.0037538 
7.667968 
0.0029188 
1.2446902 
 
24.0 
107.0000 
14.634628 
13.6783551 
15.590901 
0.4856751 
9.3653718 
0.0040034 
7.668763 
0.0030038 
1.2225414 
 
4.0 
124.0000 
7.999717 
6.7207582 
9.278676 
0.6495620 
-3.9997174 
0.0071610 
7.686511 
0.0009862 
-0.5229467 
 
25.0 
101.0000 
16.976361 
15.8514566 
18.101266 
0.5713203 
8.0236386 
0.0055398 
7.674521 
0.0030603 
1.0482024 
 
2.0 
121.0000 
9.170584 
8.0198612 
10.321307 
0.5844329 
-7.1705840 
0.0057970 
7.677734 
0.0025590 
-0.9368811 
 
2.0 
122.0000 
8.780295 
7.5889743 
9.971616 
0.6050519 
-6.7802951 
0.0062133 
7.679080 
0.0024543 
-0.8860730 
 
5.0 
134.0000 
4.096829 
2.2955143 
5.898143 
0.9148575 
0.9031713 
0.0142050 
7.690277 
0.0001012 
0.1185071 
 
25.0 
110.0000 
13.463762 
12.5377737 
14.389749 
0.4702938 
11.5362385 
0.0037538 
7.657512 
0.0042714 
1.5057344 
 
9.0 
106.0000 
15.024917 
14.0497190 
16.000115 
0.4952868 
-6.0249170 
0.0041634 
7.681499 
0.0012932 
-0.7865467 
 
4.0 
119.0000 
9.951162 
8.8739776 
11.028346 
0.5470838 
-5.9511617 
0.0050798 
7.681709 
0.0015423 
-0.7772757 
 
4.0 
119.0000 
9.951162 
8.8739776 
11.028346 
0.5470838 
-5.9511617 
0.0050798 
7.681709 
0.0015423 
-0.7772757 
 
17.0 
94.0000 
19.708384 
18.2681930 
21.148574 
0.7314487 
-2.7083835 
0.0090804 
7.688657 
0.0005756 
-0.3544528 
 
3.0 
123.0000 
8.390006 
7.1558657 
9.624147 
0.6267994 
-5.3900062 
0.0066679 
7.683275 
0.0016660 
-0.7045463 
 
7.0 
126.0000 
7.219140 
5.8453381 
8.592941 
0.6977308 
-0.2191396 
0.0082625 
7.690469 
0.0000034 
-0.0286675 
 
4.0 
130.0000 
5.657984 
4.0781656 
7.237803 
0.8023635 
-1.6579842 
0.0109264 
7.689796 
0.0002605 
-0.2171869 
 
4.0 
123.0000 
8.390006 
7.1558657 
9.624147 
0.6267994 
-4.3900062 
0.0066679 
7.685701 
0.0011052 
-0.5738328 
 
5.0 
113.0000 
12.292895 
11.3551157 
13.230674 
0.4762824 
-7.2928949 
0.0038500 
7.677321 
0.0017511 
-0.9519301 
 
5.0 
116.0000 
11.122028 
10.1318833 
12.112173 
0.5028781 
-6.1220283 
0.0042920 
7.681205 
0.0013769 
-0.7992761 
 
5.0 
111.0000 
13.073473 
12.1482682 
13.998677 
0.4698959 
-8.0734727 
0.0037475 
7.674351 
0.0020885 
-1.0537635 
 
4.0 
119.0000 
9.951162 
8.8739776 
11.028346 
0.5470838 
-5.9511617 
0.0050798 
7.681709 
0.0015423 
-0.7772757 
 
5.0 
131.0000 
5.267695 
3.6337155 
6.901675 
0.8298710 
-0.2676953 
0.0116884 
7.690463 
0.0000073 
-0.0350801 
 
5.0 
120.0000 
9.560873 
8.4482829 
10.673463 
0.5650659 
-4.5608728 
0.0054192 
7.685328 
0.0009671 
-0.5957930 
 
15.0 
133.0000 
4.487118 
2.7423129 
6.231922 
0.8861571 
10.5128825 
0.0133277 
7.662845 
0.0128398 
1.3788050 
 
5.0 
108.0000 
14.244339 
13.3027019 
15.185977 
0.4782419 
-9.2443393 
0.0038818 
7.669324 
0.0028370 
-1.2066683 
 
5.0 
117.0000 
10.731739 
9.7160668 
11.747412 
0.5158432 
-5.7317395 
0.0045162 
7.682349 
0.0012705 
-0.7484052 
 
5.0 
118.0000 
10.341451 
9.2966681 
11.386233 
0.5306276 
-5.3414506 
0.0047788 
7.683417 
0.0011682 
-0.6975364 
 
5.0 
112.0000 
12.683184 
11.7540290 
13.612339 
0.4719022 
-7.6831838 
0.0037795 
7.675874 
0.0019077 
-1.0028385 
 
19.0 
98.0000 
18.147228 
16.8984852 
19.395971 
0.6342156 
0.8527720 
0.0068267 
7.690300 
0.0000427 
0.1114777 
 
8.0 
129.0000 
6.048273 
4.5216627 
7.574883 
0.7753399 
1.9517270 
0.0102028 
7.689533 
0.0003366 
0.2555721 
 
8.0 
121.0000 
9.170584 
8.0198612 
10.321307 
0.5844329 
-1.1705840 
0.0057970 
7.690141 
0.0000682 
-0.1529440 
 
12.0 
115.0000 
11.512317 
10.5438343 
12.480800 
0.4918763 
0.4876828 
0.0041063 
7.690422 
0.0000084 
0.0636647 
 
6.0 
111.0000 
13.073473 
12.1482682 
13.998677 
0.4698959 
-7.0734727 
0.0037475 
7.678102 
0.0016031 
-0.9232418 
 
6.0 
130.0000 
5.657984 
4.0781656 
7.237803 
0.8023635 
0.3420158 
0.0109264 
7.690452 
0.0000111 
0.0448022 
 
10.0 
99.0000 
17.756939 
16.5517004 
18.962178 
0.6121206 
-7.7569391 
0.0063593 
7.675553 
0.0032888 
-1.0137787 
 
11.0 
122.0000 
8.780295 
7.5889743 
9.971616 
0.6050519 
2.2197049 
0.0062133 
7.689260 
0.0002630 
0.2900789 
 
20.0 
106.0000 
15.024917 
14.0497190 
16.000115 
0.4952868 
4.9750830 
0.0041634 
7.684357 
0.0008818 
0.6494920 
 
11.0 
120.0000 
9.560873 
8.4482829 
10.673463 
0.5650659 
1.4391272 
0.0054192 
7.689968 
0.0000963 
0.1879951 
 
7.0 
115.0000 
11.512317 
10.5438343 
12.480800 
0.4918763 
-4.5123172 
0.0041063 
7.685444 
0.0007154 
-0.5890615 
 
7.0 
119.0000 
9.951162 
8.8739776 
11.028346 
0.5470838 
-2.9511617 
0.0050798 
7.688325 
0.0003793 
-0.3854485 
 
12.0 
105.0000 
15.415206 
14.4170377 
16.413374 
0.5069529 
-3.4152059 
0.0043618 
7.687595 
0.0004355 
-0.4458960 
 
8.0 
127.0000 
6.828851 
5.4053723 
8.252329 
0.7229610 
1.1711492 
0.0088708 
7.690140 
0.0001051 
0.1532550 
 
8.0 
108.0000 
14.244339 
13.3027019 
15.185977 
0.4782419 
-6.2443393 
0.0038818 
7.680835 
0.0012945 
-0.8150768 
 
15.0 
123.0000 
8.390006 
7.1558657 
9.624147 
0.6267994 
6.6099938 
0.0066679 
7.679641 
0.0025056 
0.8640151 
 
8.0 
126.0000 
7.219140 
5.8453381 
8.592941 
0.6977308 
0.7808604 
0.0082625 
7.690329 
0.0000435 
0.1021510 
 
9.0 
119.0000 
9.951162 
8.8739776 
11.028346 
0.5470838 
-0.9511617 
0.0050798 
7.690257 
0.0000394 
-0.1242304 
 
9.0 
117.0000 
10.731739 
9.7160668 
11.747412 
0.5158432 
-1.7317395 
0.0045162 
7.689739 
0.0001160 
-0.2261169 
 
14.0 
126.0000 
7.219140 
5.8453381 
8.592941 
0.6977308 
6.7808604 
0.0082625 
7.679054 
0.0032779 
0.8870619 
 
14.0 
125.0000 
7.609428 
6.2838548 
8.935002 
0.6732367 
6.3905715 
0.0076926 
7.680339 
0.0027075 
0.8357648 
 
17.0 
99.0000 
17.756939 
16.5517004 
18.962178 
0.6121206 
-0.7569391 
0.0063593 
7.690339 
0.0000313 
-0.0989268 
 
13.0 
94.0000 
19.708384 
18.2681930 
21.148574 
0.7314487 
-6.7083835 
0.0090804 
7.679288 
0.0035316 
-0.8779426 
 
11.0 
116.0000 
11.122028 
10.1318833 
12.112173 
0.5028781 
-0.1220283 
0.0042920 
7.690477 
0.0000005 
-0.0159317 
 
18.0 
113.0000 
12.292895 
11.3551157 
13.230674 
0.4762824 
5.7071051 
0.0038500 
7.682424 
0.0010724 
0.7449395 
 
11.0 
117.0000 
10.731739 
9.7160668 
11.747412 
0.5158432 
0.2682605 
0.0045162 
7.690463 
0.0000028 
0.0350273 
 
16.0 
98.0000 
18.147228 
16.8984852 
19.395971 
0.6342156 
-2.1472280 
0.0068267 
7.689337 
0.0002708 
-0.2806940 
 
10.0 
114.0000 
11.902606 
10.9516557 
12.853556 
0.4829718 
-1.9026061 
0.0039589 
7.689586 
0.0001226 
-0.2483578 
 
16.5 
97.0000 
18.537517 
17.2433404 
19.831693 
0.6572906 
-2.0375168 
0.0073325 
7.689451 
0.0002621 
-0.2664200 
 
12.0 
109.0000 
13.854050 
12.9225573 
14.785543 
0.4730898 
-1.8540504 
0.0037986 
7.689631 
0.0001117 
-0.2420000 
 
15.0 
98.0000 
18.147228 
16.8984852 
19.395971 
0.6342156 
-3.1472280 
0.0068267 
7.688024 
0.0005817 
-0.4114179 
 
11.0 
124.0000 
7.999717 
6.7207582 
9.278676 
0.6495620 
3.0002826 
0.0071610 
7.688248 
0.0005549 
0.3922747 
 
13.0 
109.0000 
13.854050 
12.9225573 
14.785543 
0.4730898 
-0.8540504 
0.0037986 
7.690300 
0.0000237 
-0.1114750 
 
14.0 
114.0000 
11.902606 
10.9516557 
12.853556 
0.4829718 
2.0973939 
0.0039589 
7.689393 
0.0001490 
0.2737845 
 
12.0 
115.0000 
11.512317 
10.5438343 
12.480800 
0.4918763 
0.4876828 
0.0041063 
7.690422 
0.0000084 
0.0636647 
 
12.0 
122.0000 
8.780295 
7.5889743 
9.971616 
0.6050519 
3.2197049 
0.0062133 
7.687911 
0.0005534 
0.4207624 
 
13.0 
85.0000 
23.220983 
21.2855757 
25.156391 
0.9829612 
-10.2209833 
0.0163986 
7.664280 
0.0150266 
-1.3426122 
 
42.0 
89.0000 
21.659828 
19.9524648 
23.367191 
0.8671411 
20.3401722 
0.0127619 
7.586574 
0.0459711 
2.6669272 
 
21.0 
83.0000 
24.001561 
21.9488035 
26.054319 
1.0425613 
-3.0015610 
0.0184475 
7.688220 
0.0014639 
-0.3946916 
 
27.0 
117.0000 
10.731739 
9.7160668 
11.747412 
0.5158432 
16.2682605 
0.0045162 
7.624727 
0.0102350 
2.1241809 
 
29.0 
131.0000 
5.267695 
3.6337155 
6.901675 
0.8298710 
23.7323047 
0.0116884 
7.548831 
0.0571944 
3.1100005 
 
21.0 
100.0000 
17.366650 
16.2027698 
18.530531 
0.5911154 
3.6333498 
0.0059303 
7.687209 
0.0006723 
0.4747514 
 
7.0 
127.0000 
6.828851 
5.4053723 
8.252329 
0.7229610 
0.1711492 
0.0088708 
7.690473 
0.0000022 
0.0223964 
 
15.0 
114.0000 
11.902606 
10.9516557 
12.853556 
0.4829718 
3.0973939 
0.0039589 
7.688108 
0.0003249 
0.4043201 
 
3.0 
102.0000 
16.586073 
15.4975049 
17.674640 
0.5528653 
-13.5860725 
0.0051877 
7.644650 
0.0082108 
-1.7745606 
 
4.0 
134.0000 
4.096829 
2.2955143 
5.898143 
0.9148575 
-0.0968287 
0.0142050 
7.690478 
0.0000012 
-0.0127051 
 
5.0 
127.0000 
6.828851 
5.4053723 
8.252329 
0.7229610 
-1.8288508 
0.0088708 
7.689650 
0.0002563 
-0.2393209 
 
15.0 
105.0000 
15.415206 
14.4170377 
16.413374 
0.5069529 
-0.4152059 
0.0043618 
7.690438 
0.0000064 
-0.0542101 
 
4.0 
123.0000 
8.390006 
7.1558657 
9.624147 
0.6267994 
-4.3900062 
0.0066679 
7.685701 
0.0011052 
-0.5738328 
 
24.0 
78.0000 
25.953005 
23.5998340 
28.306177 
1.1951364 
-1.9530054 
0.0242421 
7.689518 
0.0008241 
-0.2575727 
 
6.0 
124.0000 
7.999717 
6.7207582 
9.278676 
0.6495620 
-1.9997174 
0.0071610 
7.689489 
0.0002465 
-0.2614548 
 
10.0 
108.0000 
14.244339 
13.3027019 
15.185977 
0.4782419 
-4.2443393 
0.0038818 
7.686026 
0.0005980 
-0.5540158 
 
7.0 
114.0000 
11.902606 
10.9516557 
12.853556 
0.4829718 
-4.9026061 
0.0039589 
7.684536 
0.0008139 
-0.6399645 
 
4.0 
122.0000 
8.780295 
7.5889743 
9.971616 
0.6050519 
-4.7802951 
0.0062133 
7.684816 
0.0012200 
-0.6247059 
 
6.0 
108.0000 
14.244339 
13.3027019 
15.185977 
0.4782419 
-8.2443393 
0.0038818 
7.673658 
0.0022564 
-1.0761378 
 
21.0 
118.0000 
10.341451 
9.2966681 
11.386233 
0.5306276 
10.6585494 
0.0047788 
7.662317 
0.0046513 
1.3918927 
 
13.0 
108.0000 
14.244339 
13.3027019 
15.185977 
0.4782419 
-1.2443393 
0.0038818 
7.690098 
0.0000514 
-0.1624242 
 
5.0 
124.0000 
7.999717 
6.7207582 
9.278676 
0.6495620 
-2.9997174 
0.0071610 
7.688248 
0.0005547 
-0.3922008 
 
9.0 
102.0000 
16.586073 
15.4975049 
17.674640 
0.5528653 
-7.5860725 
0.0051877 
7.676221 
0.0025599 
-0.9908637 
 
10.0 
105.0000 
15.415206 
14.4170377 
16.413374 
0.5069529 
-5.4152059 
0.0043618 
7.683224 
0.0010950 
-0.7070200 
 
10.0 
125.6231 
7.366226 
6.0107786 
8.721674 
0.6884091 
2.6337739 
0.0080432 
7.688758 
0.0004812 
0.3445082 
 
7.0 
109.0000 
13.854050 
12.9225573 
14.785543 
0.4730898 
-6.8540504 
0.0037986 
7.678858 
0.0015259 
-0.8946254 
 
8.0 
124.0000 
7.999717 
6.7207582 
9.278676 
0.6495620 
0.0002826 
0.0071610 
7.690481 
0.0000000 
0.0000370 
 
9.0 
119.0000 
9.951162 
8.8739776 
11.028346 
0.5470838 
-0.9511617 
0.0050798 
7.690257 
0.0000394 
-0.1242304 
 
8.0 
110.0000 
13.463762 
12.5377737 
14.389749 
0.4702938 
-5.4637615 
0.0037538 
7.683098 
0.0009581 
-0.7131418 
 
9.0 
122.0000 
8.780295 
7.5889743 
9.971616 
0.6050519 
0.2197049 
0.0062133 
7.690469 
0.0000026 
0.0287118 
 
12.0 
122.0000 
8.780295 
7.5889743 
9.971616 
0.6050519 
3.2197049 
0.0062133 
7.687911 
0.0005534 
0.4207624 
 
14.0 
108.0000 
14.244339 
13.3027019 
15.185977 
0.4782419 
-0.2443393 
0.0038818 
7.690466 
0.0000020 
-0.0318937 
 
47.0 
87.0000 
22.440406 
20.6202698 
24.260541 
0.9244165 
24.5595945 
0.0145034 
7.538244 
0.0764377 
3.2230060 
 
29.0 
77.0000 
26.343294 
23.9290733 
28.757515 
1.2261425 
2.6567058 
0.0255163 
7.688697 
0.0016094 
0.3506095 
 
45.0 
105.0000 
15.415206 
14.4170377 
16.413374 
0.5069529 
29.5847941 
0.0043618 
7.470849 
0.0326821 
3.8626492 
 
20.0 
96.0000 
18.927806 
17.5864623 
20.269149 
0.6812459 
1.0721943 
0.0078767 
7.690195 
0.0000781 
0.1402356 
 
33.0 
106.0000 
15.024917 
14.0497190 
16.000115 
0.4952868 
17.9750830 
0.0041634 
7.610158 
0.0115112 
2.3466285 
 
33.0 
97.0000 
18.537517 
17.2433404 
19.831693 
0.6572906 
14.4624832 
0.0073325 
7.638413 
0.0132079 
1.8910736 
 
15.0 
111.0000 
13.073473 
12.1482682 
13.998677 
0.4698959 
1.9265273 
0.0037475 
7.689563 
0.0001189 
0.2514536 
 
27.0 
85.0000 
23.220983 
21.2855757 
25.156391 
0.9829612 
3.7790167 
0.0163986 
7.686904 
0.0020541 
0.4964057 
 
22.0 
88.0000 
22.050117 
20.2867099 
23.813523 
0.8956048 
-0.0501167 
0.0136134 
7.690480 
0.0000003 
-0.0065739 
 
12.0 
105.0000 
15.415206 
14.4170377 
16.413374 
0.5069529 
-3.4152059 
0.0043618 
7.687595 
0.0004355 
-0.4458960 
 
32.0 
81.0000 
24.782139 
22.6102899 
26.953988 
1.1030457 
7.2178612 
0.0206501 
7.677369 
0.0095185 
0.9501826 
 
26.0 
121.0000 
9.170584 
8.0198612 
10.321307 
0.5844329 
16.8294160 
0.0057970 
7.620000 
0.0140960 
2.1988672 
 
29.0 
108.0000 
14.244339 
13.3027019 
15.185977 
0.4782419 
14.7556607 
0.0038818 
7.636462 
0.0072282 
1.9260640 
 
23.0 
106.0000 
15.024917 
14.0497190 
16.000115 
0.4952868 
7.9750830 
0.0041634 
7.674736 
0.0022659 
1.0411389 
 
29.0 
92.0000 
20.488961 
18.9448765 
22.033046 
0.7842148 
8.5110388 
0.0104377 
7.672432 
0.0065522 
1.1146243 
 
29.0 
112.0000 
12.683184 
11.7540290 
13.612339 
0.4719022 
16.3168162 
0.0037795 
7.624381 
0.0086041 
2.1297331 
 
14.0 
122.0000 
8.780295 
7.5889743 
9.971616 
0.6050519 
5.2197049 
0.0062133 
7.683726 
0.0014546 
0.6821295 
 
14.0 
96.0000 
18.927806 
17.5864623 
20.269149 
0.6812459 
-4.9278057 
0.0078767 
7.684451 
0.0016490 
-0.6445227 
 
23.0 
82.0000 
24.391850 
22.2797461 
26.503954 
1.0727023 
-1.3918499 
0.0195296 
7.689994 
0.0003340 
-0.1831229 
 
0.0 
134.0000 
4.096829 
2.2955143 
5.898143 
0.9148575 
-4.0968287 
0.0142050 
7.686287 
0.0020819 
-0.5375539 
 
4.0 
129.0000 
6.048273 
4.5216627 
7.574883 
0.7753399 
-2.0482730 
0.0102028 
7.689437 
0.0003708 
-0.2682145 
 
2.0 
128.0000 
6.438562 
4.9641036 
7.913020 
0.7488527 
-4.4385619 
0.0095176 
7.685581 
0.0016219 
-0.5810137 
 
3.0 
125.0000 
7.609428 
6.2838548 
8.935002 
0.6732367 
-4.6094285 
0.0076926 
7.685206 
0.0014086 
-0.6028253 
 
8.0 
100.0000 
17.366650 
16.2027698 
18.530531 
0.5911154 
-9.3666502 
0.0059303 
7.668715 
0.0044681 
-1.2238928 
 
19.0 
109.0000 
13.854050 
12.9225573 
14.785543 
0.4730898 
5.1459496 
0.0037986 
7.683932 
0.0008601 
0.6716754 
 
14.0 
109.0000 
13.854050 
12.9225573 
14.785543 
0.4730898 
0.1459496 
0.0037986 
7.690475 
0.0000007 
0.0190501 
 
6.0 
116.0000 
11.122028 
10.1318833 
12.112173 
0.5028781 
-5.1220283 
0.0042920 
7.683989 
0.0009638 
-0.6687187 
 
3.0 
112.0000 
12.683184 
11.7540290 
13.612339 
0.4719022 
-9.6831838 
0.0037795 
7.667267 
0.0030302 
-1.2638861 
 
9.0 
123.0000 
8.390006 
7.1558657 
9.624147 
0.6267994 
0.6099938 
0.0066679 
7.690388 
0.0000213 
0.0797344 
 
7.0 
111.0000 
13.073473 
12.1482682 
13.998677 
0.4698959 
-6.0734727 
0.0037475 
7.681357 
0.0011819 
-0.7927201 
 
8.0 
114.0000 
11.902606 
10.9516557 
12.853556 
0.4829718 
-3.9026061 
0.0039589 
7.686714 
0.0005157 
-0.5094289 
 
20.0 
103.0000 
16.195784 
15.1406420 
17.250925 
0.5358888 
3.8042164 
0.0048740 
7.686898 
0.0006045 
0.4968138 
 
5.0 
115.0000 
11.512317 
10.5438343 
12.480800 
0.4918763 
-6.5123172 
0.0041063 
7.679986 
0.0014900 
-0.8501519 
 
7.0 
105.0000 
15.415206 
14.4170377 
16.413374 
0.5069529 
-8.4152059 
0.0043618 
7.672944 
0.0026442 
-1.0987059 
 
7.0 
103.0000 
16.195784 
15.1406420 
17.250925 
0.5358888 
-9.1957836 
0.0048740 
7.669525 
0.0035319 
-1.2009286 
 
10.0 
114.0000 
11.902606 
10.9516557 
12.853556 
0.4829718 
-1.9026061 
0.0039589 
7.689586 
0.0001226 
-0.2483578 
 
11.0 
122.0000 
8.780295 
7.5889743 
9.971616 
0.6050519 
2.2197049 
0.0062133 
7.689260 
0.0002630 
0.2900789 
 
12.0 
110.0000 
13.463762 
12.5377737 
14.389749 
0.4702938 
-1.4637615 
0.0037538 
7.689951 
0.0000688 
-0.1910533 
 
8.0 
120.0000 
9.560873 
8.4482829 
10.673463 
0.5650659 
-1.5608728 
0.0054192 
7.689877 
0.0001133 
-0.2038989 
 
8.0 
125.0000 
7.609428 
6.2838548 
8.935002 
0.6732367 
0.3905715 
0.0076926 
7.690443 
0.0000101 
0.0510793 
 
14.0 
112.0000 
12.683184 
11.7540290 
13.612339 
0.4719022 
1.3168162 
0.0037795 
7.690052 
0.0000560 
0.1718759 
 
10.0 
114.0000 
11.902606 
10.9516557 
12.853556 
0.4829718 
-1.9026061 
0.0039589 
7.689586 
0.0001226 
-0.2483578 
 
13.0 
111.0000 
13.073473 
12.1482682 
13.998677 
0.4698959 
-0.0734727 
0.0037475 
7.690479 
0.0000002 
-0.0095898 
 
11.0 
119.0000 
9.951162 
8.8739776 
11.028346 
0.5470838 
1.0488383 
0.0050798 
7.690208 
0.0000479 
0.1369878 
 
11.0 
108.0000 
14.244339 
13.3027019 
15.185977 
0.4782419 
-3.2443393 
0.0038818 
7.687878 
0.0003494 
-0.4234853 
 
9.0 
119.0000 
9.951162 
8.8739776 
11.028346 
0.5470838 
-0.9511617 
0.0050798 
7.690257 
0.0000394 
-0.1242304 
 
15.0 
121.0000 
9.170584 
8.0198612 
10.321307 
0.5844329 
5.8294160 
0.0057970 
7.682059 
0.0016913 
0.7616492 
 
11.0 
118.0000 
10.341451 
9.2966681 
11.386233 
0.5306276 
0.6585494 
0.0047788 
7.690373 
0.0000178 
0.0859995 
 
13.0 
119.0000 
9.951162 
8.8739776 
11.028346 
0.5470838 
3.0488383 
0.0050798 
7.688180 
0.0004048 
0.3982059 
 
44.0 
97.0000 
18.537517 
17.2433404 
19.831693 
0.6572906 
25.4624832 
0.0073325 
7.527916 
0.0409401 
3.3294027 
 
28.0 
110.0000 
13.463762 
12.5377737 
14.389749 
0.4702938 
14.5362385 
0.0037538 
7.638069 
0.0067819 
1.8973008 
 
4.0 
111.0000 
13.073473 
12.1482682 
13.998677 
0.4698959 
-9.0734727 
0.0037475 
7.670102 
0.0026379 
-1.1842852 
 
3.0 
136.0000 
3.316251 
1.4000461 
5.232456 
0.9732084 
-0.3162509 
0.0160748 
7.690456 
0.0000141 
-0.0415354 
 
15.0 
101.0000 
16.976361 
15.8514566 
18.101266 
0.5713203 
-1.9763614 
0.0055398 
7.689513 
0.0001857 
-0.2581904 
 
2.0 
113.0000 
12.292895 
11.3551157 
13.230674 
0.4762824 
-10.2928949 
0.0038500 
7.664244 
0.0034881 
-1.3435154 
 
11.0 
102.0000 
16.586073 
15.4975049 
17.674640 
0.5528653 
-5.5860725 
0.0051877 
7.682752 
0.0013881 
-0.7296313 
 
4.0 
118.0000 
10.341451 
9.2966681 
11.386233 
0.5306276 
-6.3414506 
0.0047788 
7.680523 
0.0016465 
-0.8281257 
 
4.0 
130.0000 
5.657984 
4.0781656 
7.237803 
0.8023635 
-1.6579842 
0.0109264 
7.689796 
0.0002605 
-0.2171869 
 
21.0 
103.0000 
16.195784 
15.1406420 
17.250925 
0.5358888 
4.8042164 
0.0048740 
7.684767 
0.0009640 
0.6274094 
 
10.0 
128.0000 
6.438562 
4.9641036 
7.913020 
0.7488527 
3.5614381 
0.0095176 
7.687326 
0.0010442 
0.4661970 
 
5.0 
129.0000 
6.048273 
4.5216627 
7.574883 
0.7753399 
-1.0482730 
0.0102028 
7.690207 
0.0000971 
-0.1372678 
 
23.0 
91.0000 
20.879250 
19.2816314 
22.476869 
0.8114038 
2.1207499 
0.0111740 
7.689361 
0.0004362 
0.2778414 
 
5.0 
128.0000 
6.438562 
4.9641036 
7.913020 
0.7488527 
-1.4385619 
0.0095176 
7.689966 
0.0001704 
-0.1883097 
 
6.0 
108.0000 
14.244339 
13.3027019 
15.185977 
0.4782419 
-8.2443393 
0.0038818 
7.673658 
0.0022564 
-1.0761378 
 
15.0 
108.0000 
14.244339 
13.3027019 
15.185977 
0.4782419 
0.7556607 
0.0038818 
7.690340 
0.0000190 
0.0986368 
 
8.0 
107.0000 
14.634628 
13.6783551 
15.590901 
0.4856751 
-6.6346282 
0.0040034 
7.679589 
0.0015075 
-0.8660743 
 
9.0 
121.0000 
9.170584 
8.0198612 
10.321307 
0.5844329 
-0.1705840 
0.0057970 
7.690474 
0.0000014 
-0.0222879 
 
6.0 
121.0000 
9.170584 
8.0198612 
10.321307 
0.5844329 
-3.1705840 
0.0057970 
7.687990 
0.0005003 
-0.4142564 
 
7.0 
124.0000 
7.999717 
6.7207582 
9.278676 
0.6495620 
-0.9997174 
0.0071610 
7.690233 
0.0000616 
-0.1307089 
 
15.0 
115.0000 
11.512317 
10.5438343 
12.480800 
0.4918763 
3.4876828 
0.0041063 
7.687472 
0.0004274 
0.4553003 
 
8.0 
114.0000 
11.902606 
10.9516557 
12.853556 
0.4829718 
-3.9026061 
0.0039589 
7.686714 
0.0005157 
-0.5094289 
 
10.0 
115.0000 
11.512317 
10.5438343 
12.480800 
0.4918763 
-1.5123172 
0.0041063 
7.689915 
0.0000804 
-0.1974258 
 
 
 
 
 
 
 
Regression Model 
How useful are each of the individual predictors for my model?
Use the coefficients and t-tests of the slopes 
 Is my overall model (i.e., the regression equation)  useful at predicting the outcome variable?
Use the model summary, F-test, and \(R^2\)  
  
 
Overall Model Significance 
Our overall model uses an F -test
However, we can think about the hypotheses for the overall test being:
Generally, this form does not include two tailed tests because the math is squared, so it is impossible to get negative values in the statistical test
 
 
F-distribution 
 
F-Statistic, Explained Over Unexplained 
F-statistics use measures of variance, which are sums of squares divided by relevant degrees of freedom 
 
\[F = \frac{SS_{Explained}/df1 (p-1)}{SS_{Unexplained}/df2(n-p)} = \frac{MS_{Explained}}{MS_{Unexplained}}\] 
 
Calculating Mean Squares in R 
#use augment to get fitted and resid information <-  sum ((assump$ .fitted -  mean (assump$ CESD_total))^ 2 )<-  sum ((assump$ CESD_total -  assump$ .fitted)^ 2 )# calc mse explained =  SS_explained/ 1 #clac mse unexplained =  SS_unexplained/ 265 = MSE_e/ MSE_un#TSS?  
 
F test 
 Analysis of Variance Table (Type III SS)
 Model: CESD_total ~ PIL_total
                                SS  df       MS       F   PRE     p
 ----- --------------- | --------- --- -------- ------- ----- -----
 Model (error reduced) |  7929.743   1 7929.743 134.584 .3368 .0000
 Error (from model)    | 15613.882 265   58.920                    
 ----- --------------- | --------- --- -------- ------- ----- -----
 Total (empty model)   | 23543.625 266   88.510                     
 
 
Effect Size: \(R^2\)  
\[R^2 = 1 - \frac{SS_{\text{error}}}{SS_{\text{tot}}}\]  \[R^2 = 1 - \frac{SS_{unexplained}}{SS_{Total}} = \frac{SS_{explained}}{SS_{Total}}\] 
Range: 0-1
 
\(R^2\) 
glance (model1) %>% :: kable ()
 
 
0.3368106 
0.334308 
7.675957 
134.5842 
0 
1 
-922.0236 
1850.047 
1860.809 
15613.88 
265 
267 
 
 
 
 
In our example we get \(R^2\)  of .34
34% of variance in depressions scores is explained by meaning in life 
  
 
 
\(R^2_{adj}\) \[R^2_{adj}\] 
\[R^2_{adj} = 1 - \frac{SS_{unexplained}}{SS_{Total}} = \frac{SS_{explained}(n-K)}{SS_{Total}(n-1)}\]  where:
n = Sample size
K = # of predictors